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One of the most promising methods of intensifying the production yield of high-viscosity 
petroleum and gaseous hydrates, as well as overcoming complications in wells, associated 
with the settling out of paraffins and gaseous hydrates, involves the utilization of high- 
frequency electromagnetic radiation [1-4]. Owing to its deep penetration and the resulting 
internal liberation of heat electromagnetic radiation is capable of attaining a far higher 
rate of heating and uniformity in the latter at a higher efficiency than is possible with 
traditional heating methods involving steam or hot liquid. However, in order to realize 
these potentials it is necessary, in detail, to study the processes of heat and mass trans- 
fer which occur under these conditions in order to find the optimum operational regimes. 
The initial theoretical estimates of the depth of heating and of the distribution of tempera- 
tures in the heated zone were undertaken in [i]. These estimates were subsequently refined 
in [2-4]; however, no studies were undertaken, and none exist up to the present time, in- 
volving two-dimensional models. At the same time, at a stratum thickness of H ~ 1 m, a 
radiation penetration depth of s ~ i0-i00 m, and a heating time on the order of tens and 
hundreds of hours, the loss Of heat to the rocks adjacent to this stratum, both above and 
below, will be significant. As a consequence of this loss of heat a steady temperature 
distribution is established over time (whereas in a one-dimensional axisymmetric model, 
in the presence of a constant power source at the coordinate origin, the temperature through- 
out the entire region will grow without limit over time). 

The dimensions of the heated zone, determined from the depth of penetration of some 
fixed isotherm, given a source of fixed power and stratum thickness, depend on the thermo- 
physical parameters of the medium and on the absorption factor ~ = !/s The latter, in 
turn, depends on the frequency of the electromagnetic radiation, and consequently this factor 
can be controlled. With small ~ (a great depth s of radiation penetration) the energy from 
the source is scattered over a broad region and is dissipated into the adjacent rocks, with- 
out achieving the required heating. With large ~ (a low dePth s strong heating of a small 
area surrounding the source results and this leads to a significant gradient of temperature, 
with the heat moving intensively above and below the adjacent rocks, again not provid- 
ing the required radial heating. In each of these cases the heated zone is small and the 
heating ineffective. Consequently, there exists some optimum absorption factor at which 
(given a fixed power source) that the greatest dimensions for the heated zone can be achieved. 
It is obvious that there also exists an optimum heating time (for each value of ~) at which 
the ratio of the volume of the heated zone relative to the energy expended is at a maximum. 

It is the purpose of the present study to determine these optimum parameters, as well 
as to refine the other quantities which characterize the process of high-frequency stratum 

heating. 

Model and a System of Equations. The investigation was conducted on a two-dimensional 
axisymmetric model such as that shown in Fig. i. A petroleum stratum of thickness H is 
contained between planes perpendicular to the z axis (the upper plane is identified as line 
3). The stratum is surrounded, both above and below, by an unbounded medium whose thermo- 
physical characteristics differ from those of the stratum. Source 1 with a power of several 
tens or hundreds of kilowatts, emitting electromagnetic waves in the radial direction, is 
immersed into a well whose surface is denoted by line 2. As a consequence of the volumetric 
absorption of electromagnetic energy around the well, the stratum and the adjacent rock 
are subjected to heating. Curves 4-8 are isotherms of the temperature fields at a particu- 

lar instant in time (see below). 
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Fig. 1 

The electromagnetic radiation absorption factor ~ is assumed to be constant, i.e., 
independent of time, coordinate, and temperature, so that the absorption of the radiation 
follows the Bouguer-Lambert law. However, as was stated earlier, this coefficient does 
depend on the frequency of the electromagnetic radiation and its magnitude can be established 
prior to the onset of the heating process. The filtering motion of the petroleum and the 
related convective transfer of heat, as well as the exchange of heat to the surface of the 
well, are all neglected. 

Within the framework of this model the process involved in the heating of the stratum 
and the adjacent rocks is described by a two-dimensional equation of heat conduction with 
a volumetric source 

pc ~ = r Or -~r + ~ ~" ~ + exp[o~(b--r)], _ $ ( r  (i) 

where the density p, the heat capacity c, and the thermal conductivity ~ are different with- 
in the stratum and in the adjacent rock and, consequently, are functions of z; b is the 
radius of the well, W represents the linear power of the radiation source (watts per unit 
length along the z axis), and the function ~(z) characterizes the distribution, over height; 
of the absorbed power of the electromagnetic radiation. In the ideal case considered in 
this study, where the electromagnetic wave "channels" along the stratum without penetrating 
into the adjacent rocks, the function ~(z) has the form 

{~ when -- H /2 <~ z <~ H /2, 
(z) = when z < -- H/2, z ~> H/2. 

( 2 ) 

The last term in formula (i) expresses the density of the volumetric evolution of heat which 
comes about as a consequence of the absorption of the electromagnetic radiation. Indeed, 
the change in the radiant intensity I along the coordinate r can be represented as 

dI  = - - ( l / r ) I d r  - -  M d r ,  ( 3 )  

where the first term expresses the reduction in intensity as a consequence of the geometric 
dispersion of the radiation, while the second term expresses this phenomenon as a conse- 
quence of absorption. As a result of the integration of (3) in the assumption that a = 
const and with consideration of the fact that the intensity I 0 = W/2~b at the surface of 
the well, we have 

I = W ~reXp[~(b--r)], r~b ;  

the product aI(r) yields the den.ity of the volumetric evolution of heat. 

The process of paraffin melting or the decomposition of the gaseous hydrate is accounted 
for in the following manner. It is assumed that the heat capacity c within the stratum 
exhibits a singularity at the phase transition temperature Ts: 

c( T) = c o + LS(  T -- Ts) (4) 

(L is the latent heat of phase transition and 6 represents the delta function, which in 
numerical calculations is replaced by a "step" of finite width 2AT s [5]). Since the heat- 
capacity values for temperatures below and above T s are different (c o and cl, respectively), 
we can write the function c(T) in the form 
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c(T)  = 
C o 

(c o + c~)12 + L/2AT~ 
when T < T~ - -  ATe, 
when Ts - -  AT~ <~ T ~< T, + AT,, 
when T > Tz + ATs. 

(5) 

Thus, the problem under consideration here is essentially nonlinear, and it ca~ be 
included among the class of Stefan problems. Its boundary conditions are as follows: 

aT O, aT O. ( 6 )  O, 

For a numerical solution of Eq. (i) it is convenient to bring it to dimensionless form. 
If we take the depth of radiation penetration ~ = i/~ as the unit of length, and if we take 
the phase transition temperature T s as the unit of temperature, then (i) can be written 
in the following dimensionless form: 

a~ x ax \ -~x] + ~"-~ W + exp (~ - -  x) ( 7 )  

( x =  ra, ~ =  za, ~ = ba, ~ =  a~ao t, O = T/T~); 

Q = W~(z)/2aXoT,,  C = pdpoCo, A = X/%o, ao = Xo/PoCo, ( 8 )  

P0 and %0 are the density and thermal conductivity of the stratum. 

Method of Solution. To solve the formulated problem we employed the implicit method 
of variable directions with iterations based on the nonlinear dependence of the heat capacity 
on temperature (5) in a nonuniform grid [5, 6]. 

According to this method, the solution of the two-dimensional equation (7) is sought 
through successive solution of one-dimensional problems along x and ~. The interval A~ 
is broken down into two half steps, and Eq. (7) is transformed into two equations solved 

successively: 

0.~+1/2__ h A X {A~+112__ Oh+l/2~/Ax A X lab+l~2 oh+11~'~IAz 
Oi, j __ " ' j  i + l  \ - i + l z j  i j  1 !  i - -  * ' j  i I,",~,j - -  i - - l , i  1 1  i - -1  _]_ 

CU "-O-S, SA-f -- xihxi 

h 
0 h. At Q exp ([~ - -  x 0 + Aj+I (o,5- + 

(o) 

which is the first half step and 

A k + I  0/,..+1/2 ~ /,..+1/2 k+ l / ' ~  /A.-,, A ~ t a b + l / 2  ~k-t-1/2"~/A,,, Cij -ij  - -  -i~ _ Aj~i+I(O~+L j --Oij )/~-i--'~j'o~W~.~ - -~ i -L j  ~ - ~  + 
0,5A'~ xihxi 

h+l (~h+l ah+l ~/A[" 
+ "t i+l '~i ,J+l  ~-ij --"i j-l]~ -j-I + xi 

A~j 

(10) 

which is the second half step. 

Each of these equations is solved bv a sweeping method in the corresponding direction: 
(9) is solved in the direction of x (0i~ ~+I/2 is found from the known eijk), (i0) is solved 
in the direction of ~ (0ijk+1 is determined from the known eijK*I/2). Here, in each half 
step an iteration process is constructed in which the relationship between C and temperature 
is taken into consideration, the temperature having been specified in formula (5). 

An ES FORTRAN program was compiled for this algorithm. The calculations were carried 
out on an ES 1045 computer. This involved a 50 • 50 grid with the interval, on increasing 
distance along both coordinates from the source growing in a manner such that the dimensions 
of the area covered by the grid were considerably greater than 1 along both coordinates, 
thus ensuring satisfaction of boundary conditions (6). The initial temperature of the medi- 

um was assumed to be constant. 

Results and Discussion. The results of the calculations are presented in Figs. 1-4 
in dimensional form, for the sake of clarity, since there are numerous dimensionless param- 
eters (A, C, Q, ~, L/2ATsc0) and their utilization offers little in the form of generality 
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Fig. 4 

in the presentation of the results. We used the values of parameters characteristic for 
materials in petroleum technology: in the stratum P0 = 103 kg/m3, %0 = 1 W/(m.K), c o = 
2.1 kJ/(kg-K), L = 160 kJ/kg, T s = 50~ and in the adjacent rocks p = 2-103 kg/m 3, I = 
2.4 W/(m'K), c = 0.8 kJ/(kg'K). The absorption factor varied within limits of 0.01-0.i 
l/m, which is characteristic of the electromagnetic waves in the meter and decimeter range~ 
The thickness of the stratum was 1 m, and the power of the source was 315 kW. Recalcula- 
tion of the results for the other values of the parameters can be easily accomplished with 
the aid of (8). 

Figure i, which was used earlier to describe the model, shows the characteristic form 
of the temperature-field isotherms (~ = 0.01 l/m, after 25 days following the onset of heat- 
ing): curve 4 illustrates the 100~ isotherm; curve 5 shows the isotherm for 700C, and 6 
represents 500C (the melting front), 7 represents 30~ and 8 reflects the 10~ isotherm. 
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The distance R which is covered by the melting front along the r axis depends, as was 
stated earlier, on the absorption factor ~. This relationship is shown in Fig. 2 for the 
instants of time 180, 90, 30, and i0 days (curves 1-4). A heating time of 180 days, al- 
though inadequate to establish a steady temperature field, is large from the practical point 
of view; longer periods of heating are of no interest. The calculations confirm the esti- 
mate, carried out earlier in [1-4], of the maximum heating radius of several tens of meters. 
Curve 4 in Fig. 2 exhibits a clear maximum at ~ = 0.05 i/m (the optimum value). The physical 
sense of this optimum will be discussed in the following. 

Figure 3 illustrates the dynamics of the most important parameters in the stratum heat- 
ing process for various values: a) the increase in the volume V(t) of the melt zone in 
the stratum; b) the ratio of the melted volume V to the energy E emitted by the source at 
the onset of heating; c) the rise in temperature 0o = (T - T0)/(T s - To) (T o is the initial 
temperature of the medium) at the well surface at the point z = 0, exhibiting the highest 
temperature. Curves 1-4: ~ = 0.01, 0.03, 0.05, 0.i i/m. With the maximum ~ = 0.i i/m 
the melting front initially moves rapidly, but subsequently its motion is decelerated, since 
the depth of penetration (s = i0 m) for the electromagnetic waves is small and the appearance 
of large s deep within the stratum comes about primarily as a result of heat conduction. 
With minimum ~ = 0.01 i/m the energy from the source is distributed to a somewhat large 
volume and the heating proceeds slowly. The optimum value for ~ = 0.05 i/m is achieved, 
as stated earlier, by the largest R and V with rather prolonged heating times. The V/E 
curves characterize the efficiency of the heating process from another point of view, namely 
the attainment of the largest melted volume for the least expenditures of energy, and they 
exhibit clear maximawhich define the optimum (from this point of view) heating times for 
given ~. The maximum of the V/E ratio is reached at the highest ~; however, the absolute 
value of V in this case, as can be seen from Fig. 3, is not large. Thus, the data from 
Fig. 3 allow us to select the most expedient heating technology for specific practical prob- 
lems and conditions. 

With continuous heating a large melting radius can be achieved, as well as a large 
melt zone; however, the well surface in this case (see Fig. 3c) is strongly heated, i.e., 
its temperature reaches hundreds and thousands of degrees. It should be noted that under 
real conditions the temperature will be lower, since strong heating without an influx of 
oxygen will lead to decomposition of the petroleum near the well, the removal of its light 
components and, consequently, to additional losses of heat. However, in the model under 
consideration no consideration has been given to these processes. Where strong heating 
is unacceptable, we have some interest in modeling such a heating regime, where the tempera- 
ture of the well surface does not exceed some specified value, which might be attained through 
periodic disconnecting and connecting of the source or smooth reduction of the power after 
the specified maximum temperature has been reached at the point z = 0. The depth of the 
melting in this case, of course, proves to be substantially lower. The dynamics of the 
heating process in such a regime, given a maximum well surface temperature of 00 = 4.2, 
is shown in Fig. 4. The significance of Fig. 4a, b is the same as in Fig. 3a, b, while 
Fig. 4c shows the manner in which the temperature at the surface, on reaching values of 
00 = 4~2, will remain at this level in the future. Curves 1-4 represent ~ = 0.002, 0.01, 
0.i, and 1.0 i/m. As we can see from Fig. 4, the motion of the melt front depends less 
strongly on e, and in the calculations we have therefore taken a broader range of values 
for ~. The heating efficiency, i.e., the V/E ratio (Fig. 4b), is higher for large e, since 
the same depth of melting is achieved with a lower average power (Fig. 4c), owing to the 
fact that with small ~ a considerable portion of the energy is expended on useless heating 
of the area r m R. The V/E curves in Fig. 4b, just as in Fig. 3b, exhibit maxima which 
determine the optimum heating time. 

Conclusions. We have completed a numerical study on a two-dimensional model in which 
consideration has been given to the nonlinear heat-capacity function c(T) of the heating 
process for a petroleum stratum. It has been demonstrated that the efficiency of the heat- 
ing depends significantly on correct selection of the parameters, and we have particular 
reference here to the absorption factor ~ defined by the radiation frequency. We have de- 
termined the optimum values of ~, as well as the optimum heating times. We have carried 
out calculations to confirm the possibility of utilizing high-frequency electromagnetic 
heating of petroleum strata in order to intensify the production yield of high-viscosity 
petroleum and to combat other well problems, and these can also be utilized for the develop- 
ment of practical recommendations. 
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AXISYMMETRIC FUNDAMENTAL SOLUTIONS FOR THE EQUATIONS 

OF HEAT CONDUCTION IN THE CASE OF CYLINDRICAL 

ANISOTROPY OF A MEDIUM 

S. E. Mikhailov UDC 517.95 

Numerical methods of solving the boundary-value problems for the equations of mathema- 
tical physics based on the application of fundamental solutions, i.e., solutions describing 
the reaction of infinite space or an infinite plane to a concentrated action, are currently 
in widespread favor. Among these methods we can include the direct and indirect methods 
of boundary integral equations [i], as well as the method of sources in which the solution 
of the boundary-value problem is constructed by superposition of concentrated actions in 
space, above some surface encompassing the area under investigation [2]. For the equations 
of steady and nonsteady heat conduction in an isotropic medium such solutions are well estab- 
lished (see [i] and the references cited there) both for the two- and three-dimensional 
cases, as well as for the case of the axisymmetric problem. The plane and three-dimensional 
equations of heat conduction for a rectilinear anisotropic medium can be reduced to the 
isotropic case. We know of three-dimensional fundamental solutions for the equations of 
elasticity theory in the case of a medium with rectilinear anisotropy [3] and for a recti- 
linear anisotropic hereditary (or memory) elastic medium [4, 5]. 

The axisymmetric fundamental solutions for the steady and nonsteady equations of heat 
conduction in the case of a cylindrical anisotropic medium are constructed in the present 
study by reducing them to the corresponding equations for isotropic media. We present the 
limit relationships for the characteristic parametric values. As one of the limit cases 
we have derived the fundamental solutions for the steady and nonsteady equations of plane 
heat-conduction problems for a rectilinear anisotropic medium. 

The equations of nonsteady heat conduction in an arbitrarily anisotropic medium have 
the form 

div q +  oF,t= Q, q =  --ZVT. ( O o l )  

He re  T i s  t h e  t e m p e r a t u r e ;  ,q i s  t h e  h e a t - f l u x  v e c t o r ;  Q i s  t h e  s p e c i f i e d  r e l e a s e  o f  h e a t ;  
c is the coefficient of heat capacity; ~ is the symmetric heat-conduction tensor; t is time. 
The subscript which appears after the comma denotes the derivative with respect to the cor- 
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